2016年10月13日訊 日前,一項刊登于國際雜志Developmental Cell上的研究報告中,來自鄧迪大學的科學家通過研究發(fā)現,平均尺寸的細胞就是細胞世界的奧林匹克運動員,相比較大或較小尺寸的細胞而言,這些細胞往往表現地更好。
當我們在顯微鏡下觀察細胞和組織時,細胞的尺寸往往是最明顯的特性之一,然而一般情況下當細胞尺寸很小時,細胞的大小就會在不同的細胞類型間發(fā)生較大變化,比如相比白細胞而言,肌肉細胞就大得多。本文研究中研究者揭示了為何動物細胞具有特定的尺寸。在長達100多年的歷史中,科學家們認為隨著有機體尺寸的增加,即代謝的異速生長,機體的代謝活性就會下降,比如,相比類似質量的一只大狗而言,兩只小狗能夠消耗掉更多食物。
這項研究中,研究人員在細胞水平下闡明了代謝的異速生長機制,他們主要對線粒體進行了研究,線粒體作為細胞的能量工廠,其能夠產生能量以及維持細胞生長的組件。研究者Teemu Miettinen說道,線粒體是細胞中的關鍵細胞器,我們發(fā)現了線粒體的總量和其活性之間的巨大差異。當線粒體的總量隨著細胞尺寸增加時,線粒體的活性就會相應地降低,這似乎能夠限制細胞過度增長。
細胞進行充足的生長而不是無限增長是有好處的,中間尺寸細胞中的線粒體具有較高的活性,其能夠幫助細胞更好地發(fā)揮作用,這或許就為細胞處于中間尺寸提供了一種“健身優(yōu)勢”,將細胞比喻為運動員或許就能夠更好地闡明這種健身優(yōu)勢了,過于瘦弱或肥胖的運動員往往并不能在比賽中發(fā)揮地較好,而具有平均尺寸的細胞或許才是競技能手。
研究者指出,將細胞尺寸限定維護在特定范圍內對于細胞和器官的生存及再生都非常重要,細胞需要調節(jié)自身尺寸來維持最佳的功能,從而使得機體的發(fā)揮變地最佳。本文研究在控制細胞生長和尺寸上的另一項應用就是和代謝性疾病的發(fā)生直接相關,比如,細胞老化往往和細胞尺寸的增加及線粒體功能的衰退直接相關。
最后研究者Mikael Bjorklund表示,這項研究表明,細胞尺寸的缺失或許會導致線粒體功能的異常,而線粒體功能異常則會引發(fā)一系列疾病,比如神經變性疾病及代謝性障礙等,闡明細胞如何感知物理尺寸并且將尺寸同代謝活性相聯系,能夠幫助我們更好地理解多種疾病發(fā)生的分子機制。
溶酶體的特點
單層膜,含多種水解酶。
在細胞中的作用:1.分解衰老、損傷的細胞器;2.吞噬侵入細胞的病原體。
溶酶體的酶的特點
(1)溶酶體膜蛋白多為糖蛋白,溶酶體膜內表面帶負電荷。所以有助于溶酶體中的酶保持游離狀態(tài)。這對行使正常功能和防止細胞自身被消化有著重要意義;
(2)所有水解酶在pH值=5時左右活性最佳,但其周圍胞質中pH值為7.2。溶酶體膜內含有一種特殊的轉運蛋白,可以利用atp水解的能量將胞質中的H+(氫離子)泵入溶酶體,以維持其pH5;
(3)只有當被水解的物質進入溶酶體內時,溶酶體內的酶類才行使其分解作用。一旦溶酶體膜被損,水解酶逸出,導致細胞自溶。
溶酶體的功能作用
溶酶體的功能有二:一是與食物泡融合,將細胞吞噬進的食物或致病菌等大顆粒物質消化成生物大分子,殘渣通過外排作用排出細胞;二是在細胞分化過程中,某些衰老的細胞器和生物大分子等陷入溶酶體內并被消化掉,這是機體自身更新組織的需要。
溶酶體的主要作用是消化作用,是細胞內的消化器官,細胞自溶,防御以及對某些物質的利用均與溶酶體的消化作用有關。
細胞內消化:對高等動物而言細胞的營養(yǎng)物質主要來源于血液中的大分子物質,而一些大分子物質通過內吞作用進入細胞,如內吞低密脂蛋白獲得膽固醇,對一些單細胞真核生物,溶酶體的消化作用就更為重要了。
細胞凋亡:個體發(fā)生過程中往往涉及組織或器官的改造或重建,如昆蟲和蛙類的變態(tài)發(fā)育等等。這一過程是在基因控制下實現的,稱為程序性細胞死亡,注定要消除的細胞以出芽的形式形成凋亡小體,被巨噬細胞吞噬并消化。
自體吞噬:清除細胞中無用的生物大分子,衰老的細胞器等,如許多生物大分子的半衰期只有幾小時至幾天,肝細胞中線粒體的平均壽命約10天左右。
防御作用:如吞噬細胞可吞入病原體,在溶酶體中將病原體殺死和降解。
參與分泌過程的調節(jié),如將甲狀腺球蛋白降解成有活性的甲狀腺素。
形成精子的頂體:頂體相當于一個化學鉆,可溶穿卵子的皮層,使精子進入卵子。
所有白細胞均含有溶酶體性質的顆粒,能消滅入侵的微生物。然而,也有一些病源菌(如麻風桿菌、結核桿菌等)能耐受溶酶體酶的作用,因而能在巨噬細胞內存活。溶酶體在病理過程中也有重要意義。由于肺巨噬細胞吞噬吸入的硅或石棉粉塵,引起溶酶體破裂和水解酶的釋放,刺激結締組織纖維的增加,導致硅肺的發(fā)生。組織缺氧(如心肌梗死)也可造成溶酶體的急性釋放,使血液中有關酶的濃度迅速增高。
溶酶體與疾病
矽肺
二氧化硅塵粒(矽[xī]塵)吸入肺泡后被巨噬細胞吞噬,含有矽塵的吞噬小體與溶酶體合并成為次級溶酶體。二氧化硅的羥基與溶酶體膜的磷脂或蛋白形成氫鍵,導致吞噬細胞溶酶體崩解,細胞本身也被破壞,矽塵釋出,后又被其他巨噬細胞吞噬,如此反復進行。受損或已破壞的巨噬細胞釋放“致纖維化因子”,并激活成纖維細胞,導致膠原纖維沉積,肺組織纖維化。
肺結核
結核桿菌不產生內、外毒素,也無莢膜和侵襲性酶。但是菌體成分硫酸腦苷脂能抵抗胞內的溶菌殺傷作用,使結核桿菌在肺泡內大量生長繁殖,導致巨噬細胞裂解,釋放出的結核桿菌再被吞噬而重復上述過程,最終引起肺組織鈣化和纖維化。
各類溶酶體貯積癥
溶酶體貯積癥(Lysosome Storage Diseases 簡稱:LSDs)是由于遺傳缺陷引起的,由于溶酶體的酶發(fā)生變異,功能喪失,導致底物在溶酶體中大量貯積,進而影響細胞功能,常見的貯積癥主要有以下幾類:
臺-薩氏綜合征(Tay-Sachs diesease):要叫黑蒙性家族癡呆癥,溶酶體缺少氨基已糖酯酶A(β-N-hexosaminidase),導致神經節(jié)甘脂GM2積累(圖6-30),影響細胞功能,造成精神癡呆,2~6歲死亡?;颊弑憩F為漸進性失明、病呆和癱瘓,該病主要出現在猶太人群中。
II型糖原累積?。≒ompe病或稱龐貝氏?。喝苊阁w缺乏α-1,4-葡萄糖苷酶,糖原在溶酶體中積累,導致心、肝、舌腫大和骨骼肌無力。屬常染色體缺陷性遺傳病,患者多為小孩,常在兩周歲以前死亡。
戈謝?。℅aucher?。河址Q腦苷脂沉積病,是巨噬細胞和腦神經細胞的溶酶體缺乏β- 葡萄糖苷酶造成的。大量的葡萄糖腦苷脂沉積在這些細胞溶酶體內,巨噬細胞變成戈謝細胞,患者的肝、脾、淋巴結等腫大,中樞神經系統(tǒng)發(fā)生退行性變化,常在1 歲內死亡。
細胞內含物?。╥nclusion-cell disease,I-cell disease):一種更嚴重的貯積癥,是N-乙酰葡糖胺磷酸轉移酶單基因突變引起的。由于基因突變,高爾基體中加工的溶酶體前酶上不能形成M6P分選信號,酶被運出細胞(default pathway)。這類病人成纖維細胞的溶酶體中沒有水解酶,導致底物在溶酶體中大量貯積,形成所謂的“包涵體(inclusion)”。另外這類病人肝細胞中有正常的溶酶體,說明溶酶體形成還具有M6P之外的途徑。
遺傳性疾病
溶酶體中酸性水解酶的合成,象其它蛋白質的生物合成過程一樣,是由基因決定的.,當基因突變引起酶蛋白合成障阻時,可造成溶酶體酶缺乏。機體由于基因缺陷,可使溶酶體中缺少某種水解酶,致使相應作用物不能降解而積蓄在溶酶體中,造成細胞代謝障阻,形成溶酶體貯積病。其主要的病理表現為有關臟器(肝、腎、心肌、骨骼肌)中溶酶體過載,即細胞攝入過多或不能消化的物質,或因溶酶體酶活性降低,以及機體的年齡增長,從而在細胞內出現大量溶酶體蓄積造成過載。目前已知這類疾病達40余種,國內可檢測的有30多種(見詞條:溶酶體貯積癥)。其中糖原貯積?、蛐褪亲钤绫话l(fā)現的。由于在肝細胞常染色體上的一個基因缺陷,使溶酶體內缺乏α-葡萄糖苷酶,導致糖原無法降解為葡萄糖,而造成糖原在肝臟和肌肉大量積蓄。此病多發(fā)生于嬰兒。臨床表現為肌無力,心臟增大,進行性心力衰竭,多于兩周歲以前死亡,故此病又稱為心臟型糖原沉著病。
類風濕關節(jié)炎
對類風濕關節(jié)炎的病因還不清楚,但此病所表現出來的關節(jié)骨膜組織的炎癥變化以及關節(jié)軟骨細胞的腐蝕,被認為是細胞內的溶酶體的局部釋放所致。其原因可能是由于某種類風濕因子,如抗IgG,被巨噬細胞、中性粒細胞等吞噬,促使溶酶體酶外逸。而其中的一些酶,如膠原酶,能腐蝕軟骨,產生關節(jié)的局部損害,而軟骨消化的代謝產物,如硫酸軟骨素,又能促使激肽的產生而參與關節(jié)的炎癥反應。
休克
在休克過程中,機體微循環(huán)發(fā)生紊亂,組織缺血、缺氧,影響了供能系統(tǒng),使膜不穩(wěn)定,引起溶酶體酶的外漏,造成細胞與機體的損傷。休克時機體細胞內溶酶體增多,體積增大,吞噬體顯著增加。溶酶體內的酶向組織內外釋放,多在肝和腸系膜等處,引起細胞和組織自溶。因此,在休克時,測定淋巴液和血液中溶酶體酶的含量高低,可作為細胞損傷輕重度的定量指標。通常以酸性磷酸酶、β-葡萄糖醛酸酶與組織蛋白酶為指標。關于休克時溶酶體釋放的機理,有人提出是由于pH降低和三羧酸循環(huán)受阻。休克時缺血缺氧,引起細胞pH值的下降(約pH5),酸性水解酶活化,水解溶酶體膜,最終導致溶酶體膜裂解,溶酶體釋放,使細胞、組織自溶。
腫瘤
溶酶體與腫瘤的關系日益引起人們的關注,一般有以下幾種觀點:
(1)致癌物質引起細胞分裂調節(jié)機能的障阻及染色體畸變,可能與溶酶體釋放水解酶的作用有關;
(2)某些影響溶酶體膜通透性的物質,如巴豆油,某些去垢劑、高壓氧等,是促進致癌作用的輔助因子,也能引發(fā)細胞的異常分裂;
(3)在核膜殘缺的情況下,核膜對核的保護喪失,溶酶體可以溶解染色質,而引起細胞突變;
(4)溶酶體代謝過程中的某些產物是腫瘤細胞增殖的物質基礎;
(5)致癌物質進入細胞,在與染色體整合之前,總是先貯存在溶酶體中,這已為放射自顯影所證實。
總之,溶酶體與腫瘤發(fā)生是否有直接關系,尚待進一步探索。
血液由血漿和血細胞組成。 血液
(一)血漿
血漿相當于結締組織的細胞間質,為淺黃色半透明液體,其中除含有大量水分以外,還有無機鹽、纖維蛋白原、白蛋白、球蛋白、酶、激素、各種營養(yǎng)物質、代謝產物等。這些物質無一定的形態(tài),但具有重要的生理功能。 1L血漿中含有900~910g水(90%~91%)。65~85g蛋白質(6.5%~8.5% )和20g低分子物質(2%).低分子物質中有多種電解質和小分子有機化合物,如代謝產物和其他某些激素等。血漿中電解質含量與組織液基本相同。由于這些溶
(二)血細胞
在機體的生命過程中,血細胞不斷地新陳代謝。紅細胞的平均壽命約120天,顆粒白細胞和血小板的生存期限一般不超過10天。淋巴細胞的生存期長短不等,從幾個小時直到幾年。 血細胞及血小板的產生來自造血器官,紅血細胞、有粒白血細胞及血小板由紅骨髓產生,無粒白血細胞則由淋巴結和脾臟產生。 血細胞分為三類:紅細胞、白細胞、血小板。 1、紅細胞 紅細胞(erythrocyte,red blood cell)直徑7~8.5μm,呈雙凹圓盤狀,中央較?。?.0μm),周緣較厚血液
(2.0μm),故在血涂片標本中呈中央染色較淺、周緣較深(見彩圖)。在掃描電鏡下,可清楚地顯示紅細胞這種形態(tài)特點。紅細胞的這種形態(tài)使它具有較大的表面積(約140μm2),從而能最大限度地適應其功能――攜O2和部分CO2。新鮮單個紅細胞為黃綠色,大量紅細胞使血液呈猩紅色,而且多個紅細胞常疊連一起呈串錢狀,稱紅細胞緡線。 紅細胞有一定的彈性和可塑性,細胞通過毛細血管時可改變形狀。紅細胞正常形態(tài)的保持需ATP供給能量,由于紅細胞缺乏線粒體,ATP只由無氧糖酵解產生;一旦缺乏ATP供能,則導致細胞膜結構改變,細胞的形態(tài)也隨之由圓盤狀變?yōu)榧驙?。這種形態(tài)改變一般是可逆的??呻S著ATP的供能狀態(tài)的改善而恢復。 成熟紅細胞無細胞核,也無細胞器,胞質內充滿血紅蛋白(hemoglobin,Hb)。血紅蛋白是含鐵的蛋白質,約占紅細胞重量的33%。它具有結合與運輸O2和CO2的功能,當血液流經肺時,肺內的O2分壓高(102mmHg),CO2分壓低(40mmHg),血紅蛋白(氧分壓40mmHg,二氧化碳分壓46mmHg)即放出CO2而與O2結合;當血液流經其它器官的組織時,由于該處的CO2分壓高(46mmHg)而O2分壓低(40mmHg),于是紅細胞即放出O2并結合CO2。由于血紅蛋白具有這種性質,所以紅細胞能供給全身組織和細胞所需的O2,帶走所產生的部分CO2。 正常成人每微升血液中紅細胞數的平均值,男性約400萬~500萬個,女性約350萬~450萬個。血液中血血液中的紅細胞
紅蛋白含量,男性約 120~150g/L,女性約105~135g/L。全身所有紅細胞表面積總計,相當于人體表面積的2000倍。紅細胞的數目及血紅蛋白的含量可有生理性改變,如嬰兒高于成人,運動時多于安靜狀態(tài),高原地區(qū)居民大都高于平原地區(qū)居民,紅細胞的形態(tài)和數目的改變、以及血紅蛋白的質和量的改變超出正常范圍,則表現為病理現象。一般說,紅細胞數少于300萬/μ1為貧血,血紅蛋白低于100g/L則為缺鐵性貧血。此時常伴有紅細胞的直徑及形態(tài)的改變,如大紅細胞貧血的紅細胞平均直徑>9μm,小紅細胞貧血的紅細胞平均直徑<6μm。缺鐵性貧血的紅細胞,由于血紅蛋白的含量明顯降低,以致中央淡染區(qū)明顯擴大。 紅細胞的滲透壓與血漿相等,使出入紅細胞的水分維持平衡。當血漿滲透壓降低時,過量水分進入細胞,細胞膨脹成球形,甚至破裂,血紅蛋白逸出,稱為溶血(hemolysis);溶血后殘留的紅細胞膜囊稱為血影(ghost)。反之,若血漿的滲透壓升高,可使紅細胞內的水分析出過多,致使紅細胞皺縮。凡能損害紅細胞的因素,如脂溶劑、蛇毒、溶血性細菌等均能引起溶血。 紅細胞的細胞膜,除具有一般細胞膜的共性外,還有其特殊性,例如紅細胞膜上有ABO血型抗原。 外周血中除大量成熟紅細胞以外,還有少量未完全成熟的紅細胞,稱為網織紅細胞(reticulocyte)在成人約為紅細胞總數的0.5%~1.5%,新生兒較多,可達3%~6%。網織紅細胞的直徑略大于成熟紅細胞,在常規(guī)染色的血涂片中不能與成熟紅細胞區(qū)分。用煌焦藍作體外活體染色,可見網織紅細胞的胞質內有染成藍色的細網或顆粒,它是細胞內殘留的核糖體。核糖體的存在,表明網織紅細胞仍有一些合成血紅蛋白的功能。紅細胞完全成熟時,核糖體消失,血紅蛋白的含量即不再增加。貧血病人如果造血功能良好,其血液中網織紅細胞的百分比值增高。因此,網織紅細胞的計數有一定臨床意義,它是貧血等某些血液病的診斷、療效判斷和估計預指標之一。 紅細胞的平均壽命約120天。衰老的紅細胞雖無形態(tài)上的特殊樗,但其機能活動和理化性質都有變化,如酶活性降低,血紅蛋白變性,細胞膜脆性增大,以及表面電荷改變等,因而細胞與氧結合的能力降低且容易破碎。衰老的紅細胞多在脾、骨髓和肝等處被巨噬細胞吞噬,同時由紅骨髓生成和釋放同等數量紅細胞進入外周血液,維持紅細胞數的相對恒定。 2、白細胞 白細胞(leukocyte,white blood cell)為無色有核的球形細胞,體積比紅細胞大,能作變形運動,具有防血液的組成
御和免疫功能。成人白細胞的正常值為4000~10000個/μ1。男女無明顯差別。嬰幼兒稍高于成人。血液中白細胞的數值可受各種生理因素的影響,如勞動、運動、飲食及婦女月經期,均略有增多。在疾病狀態(tài)下,白細胞總數及各種白細胞的百分比值皆可發(fā)生改變。 光鏡下,根據白細胞胞質有無特殊顆粒,可將其分為有粒白細胞和無粒白細胞兩類。有粒白細胞又根據顆粒的嗜色性,分為中性粒細胞、嗜酸性粒細胞用嗜堿性粒細胞。無粒白細胞有單核細胞和淋巴細胞兩種。 中性粒細胞:中性粒細胞(neutrophilic granulocyte,neutrophil)占白細胞總數的50%-70%,是白細胞中數量最多的一種。細胞呈球形,直徑10-12μm,核染色質呈團塊狀。核的形態(tài)多樣,有的呈臘腸狀,稱桿狀核;有的呈分葉狀,葉間有細絲相連,稱分葉核。細胞核一般為2~5葉,正常人以2~3葉者居多。在某些疾病情況下,核1~2葉的細胞百分率增多,稱為核左移;核4~5葉的細胞增多,稱為核右移。一般說核分葉越多,表明細胞越近衰老,但這不是絕對的,在有些疾病情況下,新生的中性粒細胞也可出現細胞核為5葉或更多葉的。桿狀核粒細胞則較幼稚,約占粒細胞總數的5%~10%,在機體受細菌嚴重感染時,其比例顯著增高。 中性粒細胞的胞質染成粉紅色,含有許多細小的淡紫色及淡紅色顆粒,顆粒可分為嗜天青顆粒和特殊顆粒兩種。嗜天青顆粒較少,呈紫色,約占顆??倲档?0%,光鏡下著色略深,體積較大;電鏡下呈圓形或橢圓形,直徑0.6~0.7μm,電子密度較高,它是一種溶酶體,含有酸性磷酸酶和過氧化物酶等,能消化分解吞噬的異物。特殊顆粒數量多,淡紅色,約占顆??倲档?0%,顆粒較小,直徑0.3~0.4μm,呈啞鈴形或橢圓形,內含堿性磷酸酶、吞噬素、溶菌酶等。吞噬素具有殺菌作用,溶菌酶能溶解細菌表面的糖蛋白。 中性粒細胞具有活躍的變形運動和吞噬功能。當機體某一部位受到細菌侵犯時,中性粒細胞對細菌產物及受感染組織釋放的某些化學物質具有趨化性,能以變形運動穿出毛細血管,聚集到細菌侵犯部位,大量吞噬細菌,形成吞噬小體。吞噬小體先后與特殊顆粒及溶酶體融合,細菌即被各種水解酶、氧化酶、溶菌酶及其它具有殺菌作用的蛋白質、多肽等成分殺死并分解消化。由此可見,中性粒細胞在體內起著重要的防御作用。中性粒細胞吞噬細胞后,自身也常壞死,成為膿細胞。中性粒細胞在血液中停留約6~7小時,在組織中存活約1~3天。 嗜酸性粒細胞:嗜酸性粒細胞(eosinophilic granulocyte,eosinophil)占白細胞總數的0.5%-3%。細臨床用血
胞呈球形,直徑10~15μm,核常為2葉,胞質內充滿粗大(直徑0.5~1.0μm)、均勻、略帶折光性的嗜酸性顆粒,染成桔紅色。電鏡下,顆粒多呈橢圓形,有膜包被,內含顆粒狀基質和方形或長方形晶體。顆粒含有酸性磷酸酶、芳基硫酸酯酶、過氧化物酶和組胺酶等,因此它也是一種溶酶體。 嗜酸性粒細胞也能作變形運動,并具有趨化性。它能吞噬抗原抗體復合物,釋放組胺酶滅活組胺,從而減弱過敏反應。嗜酸性粒細胞還能借助抗體與某些寄生蟲表面結合,釋放顆粒內物質,殺滅寄生蟲。故而嗜酸性粒細胞具有抗過敏和抗寄生蟲作用。在過敏性疾病或寄生蟲病時,血液中嗜酸性粒細胞增多。它在血液中一般僅停留數小時,在組織中可存活8~12天。 嗜堿性粒細胞:嗜堿性粒細胞(basoophilic granulocyte,basophil)數量最少,占白細胞總數的0~15。細胞呈球形,直徑10-12μm。胞核分葉或呈S形或不規(guī)則形,著色較淺。胞質內含有嗜堿性顆粒,大小不等,分布不均,染成藍紫色,可覆蓋在核上。顆粒具有異染性,甲苯胺藍染色呈紫紅色。電鏡下,嗜堿性顆粒內充滿細小微粒,呈均勻狀或螺紋狀分布。顆粒內含有肝素和組胺,可被快速釋放;而白三烯則存在于細胞基質內,它的釋放較前者緩慢。肝素具有抗凝血作用,,組胺和白三烯參與過敏反應。嗜堿性粒細胞在組織中可存活12-15天。 嗜堿性粒細胞與肥大細胞,在分布、胞核的形態(tài),以及顆粒的大小與結構上,均有所不同。但兩種細胞都含有肝素、組胺和白三烯等成分,故嗜堿性粒細胞的功能與肥大細胞相似,但兩者的關系尚待研究。 單核細胞單核細胞(monocyte)占白細胞總數的3%~8%。它是白細胞中體積最大的細胞。直徑14~20μm,呈圓形或橢圓形。胞核形態(tài)多樣,呈卵圓形、腎形、馬蹄形或不規(guī)則形等。核常偏位,染色質顆粒細而松散,故著色較淺。胞質較多,呈弱嗜堿性,含有許多細小的嗜天青顆粒,使胞質染成深淺不勻的灰藍色。顆粒內含有過氧化物酶、酸性磷酸酶、非特異性酯酶和溶菌酶,這些酶不僅與單核細胞的功能有關,而且可作為與淋巴細胞的鑒別點。電鏡下,細胞表面有皺褶和微絨毛,胞質內有許多吞噬泡、線粒體和粗面內質網,顆粒具溶酶體樣結構。 單核細胞具有活躍的變形運動、明顯的趨化性和一定的吞噬功能。單核細胞是巨噬細胞的前身,它在血血液透析圖
流中停留1-5天后,穿出血管進入組織和體腔,分化為巨噬細胞。單核細胞和巨噬細胞都能消滅侵入機體的細菌,吞噬異物顆粒,消除體內衰老損傷的細胞,并參與免疫,但其功能不及巨噬細胞強。 淋巴細胞:淋巴細胞(lymphocyte)占白細胞總數的20%~30%,圓形或橢圓形,大小不等。直徑6~8μm的為小淋巴細胞,9~12μm的為中淋巴細胞, 13~20μm的為大淋巴細胞。小淋巴細胞數量最多,細胞核圓形,一側常有小凹陷,染色質致密呈塊狀,著色深,核占細胞的大部,胞質很少,在核周成一窄緣,嗜堿性,染成蔚藍色,含少量嗜天青顆粒。中淋巴細胞和大淋巴細胞的核橢圓形,染色質較疏松,故著色較淺,胞質較多,胞質內也可見少量嗜天青顆粒。少數大、中淋巴細胞的核呈腎形,胞質內含有較多的大嗜天青顆粒,稱為大顆粒淋巴細胞、電鏡下,淋巴細胞的胞質內主要是大量的游離核糖體,其他細胞器均不發(fā)達。 以往曾認為,大、中、小淋巴細胞的分化程度不同,小淋巴細胞為終末細胞。但目前普遍認為,多數小淋巴細胞并非終末細胞。它在抗原刺激下可轉變?yōu)橛字傻牧馨图毎?,進而增殖分化。而且淋巴細胞也并非單一群體,根據它們的發(fā)生部位、表面特征、壽命長短和免疫功能的不同,至少可分為T細胞、B細胞、殺傷(K)細胞和自然殺傷(NK)細胞等四類。 血液中的T細胞約占淋巴細胞總數的75%,它參與細胞免疫,如排斥異移體移植物、抗腫瘤等,并具有免疫調節(jié)功能。B細胞約占血中淋巴細胞總數的10%~15%。B細胞受抗原刺激后增殖分化為漿細胞,產生抗體,參與體液免疫(詳見免疫系統(tǒng))。 3、血小板 血小板(platelet)是哺乳動物血液中的有形成分之一。它有質膜,沒有細胞核結構,一般呈圓形,體積小于紅細胞和白細胞。血小板在長期內被看作是血液中的無功能的細胞碎片。直到1882年意大利醫(yī)師J.B.比佐澤羅發(fā)現它們在血管損傷后的止血過程中起著重要作用,才首次提出血小板的命名。 血小板具有特定的形態(tài)結構和生化組成,在正常血液中有較恒定的數量(如人的血小板數為每立方毫米10~30萬),在止血、傷口愈合、炎癥反應、血栓形成及器官移植排斥等生理和病理過程中有重要作用。 血小板只存在于哺乳動物血液中。低等脊椎動物圓口綱有紡錘細胞起凝血作用,魚綱開始有特定的血栓細胞。兩棲、爬行和鳥綱動物血液中都有血栓細胞,血栓細胞是有細胞核的梭形成橢圓形細胞,功能與血小板相似。無脊椎動物沒有專一的血栓細胞,如軟體動物的變形細胞兼有防御和創(chuàng)傷治愈作用。甲殼動物只有一種血細胞,兼有凝血作用。 血小板為圓盤形,直徑1~4微米到7~8微米不等,且個體差異很大(5~12立方微米)。血小板因能運動和變形,故用一般方法觀察時表現為多形態(tài)。血小板結構復雜,簡言之,由外向內為3層結構,即由外膜、單元膜及膜下微絲結構組成的外圍為第1層;第2層為凝膠層,電鏡下見到與周圍平行的微絲及微管構造;第3層為微器官層,有線粒體、致密小體、殘核等結構。 血細胞形態(tài)、數量、比例和血紅蛋白含量的測定稱為血像。患病時,血像常有顯著變化,故檢查血像對了解機體狀況和診斷疾病十分重要。
編輯本段血型
血型(blood groups;blood types)
是以血液抗原形式表現出來的一種遺傳性狀。狹義地講,血型專指紅細胞抗原在個體間的差異;但現已知道除紅細胞外,在白細胞、血小板乃至某些血漿蛋白,個體之間也存在著抗原差異。因此,廣義的血型應包括血液各成分的抗原在個體間出現的差異。通常人們對血型的了解往往僅局限于ABO血型以及輸血問題等方面,實際上,血型在人類學、遺傳學、法醫(yī)學、臨床醫(yī)學等學科都有廣泛的實用價值,因此具有著重要的理論和實踐意義,同時,動物血型的發(fā)現也為血型研究提供了新的問題和研究方向。
ABO血型
ABO血型可分為A、B、AB和O型等4種血型。紅細胞含A抗原和H抗原的叫做A型,A型的人血清中含有抗B抗體;紅細胞含B抗原和H抗原的叫做B型,B型的人血清中含有抗A抗體;紅細胞含A抗原、B抗原和H抗原,叫做AB型,這種血型的人血清中沒有抗A抗體和抗B抗體;紅細胞只有H抗原,叫做O型,O型的人血清中含有抗A抗體和抗B抗體。 ABO血型物質除存在于紅細胞膜上外,還出現于唾液、胃液、精液等分泌液中。中國60%漢族人唾液中有ABO血型物質。血型物質的化學本質是指構成血型抗原的糖蛋白或糖脂,而血型的特異性主要取決于血型抗原糖鏈的組成(即血型抗原的決定簇在糖鏈上)。A、B、H3種血型抗原化學結構的差異,僅在于糖鏈末端的1個單糖。A抗原糖鏈末端為N-乙酰半乳糖,而B抗原糖鏈末端為半乳糖,H抗原和A、B抗原相比則糖鏈末端少1個半乳糖或N-乙酰半乳糖。1981年已有人用綠咖啡豆酶(半乳糖苷酶)作用于B型紅細胞,切去B抗原上的半乳糖,從而使B型轉變成O型獲得成功。 E.von鄧格恩及L.希爾斯費爾德于1911年發(fā)現A血型的亞型。他們看到不同A型人的紅細胞與抗A血清發(fā)生凝集反應的強度不一,在反應弱的A型人血清中還有一種抗體能與反應強的A型紅細胞發(fā)生凝集反應。據此認為在A型中存在亞型;即A1及A2亞型。A1.型紅細胞與抗A血清(來自B或O型人)反應強,而A2型紅細胞與抗A血清反應弱。而且在部分A2型人的血清中,除存在的抗B外,還有不規(guī)則的抗A1。在B型人血清中有兩種抗體:抗A及抗A1??笰能與A1及A2細胞發(fā)生反應;抗A1只與A1細胞發(fā)生反應。A1型紅細胞上有A及A1兩種抗原。A2細胞上只有A抗原。AB型也可分為A1B及A2B等亞型。此外還有一些其他亞型。
MN血型
紅細胞膜上另一類血型抗原叫MN抗原,即紅細胞膜上的血型糖蛋白A。它在SOS凝膠電泳譜上顯示兩條區(qū)帶,即PAS-1和PAS-2,血型糖蛋白A是兩者的二聚物。已知血型糖蛋白A由131個氨基酸組成,其一級結構已測定(圖2)。血型糖蛋白A的肽鏈呈三節(jié)式結構,中間第73~92號氨基酸為疏水性肽鏈,可橫穿膜脂層;N端肽鏈位于膜外側,與血型活性有關,在這段肽鏈上分布有15條O-糖苷鍵型糖鏈和1條N-糖苷鍵型糖鏈,糖鏈中唾液酸占紅細胞膜上全部唾液酸的一半以上;C端肽鏈位于膜內側,含較多酸性氨基酸。 MN抗原由M抗原和N抗原兩部分組成,如果用神經氨酸酶將M抗原切去1個唾液酸(N-乙酰神經氨酸),則為N抗原,如再切去一個唾液酸則抗原性完全失去。MN抗原的抗原性還和肽鏈上的氨基有關,若將氨基用乙?;Wo后即失去抗原性。
白細胞血型——HLA
HLA是人類白細胞抗原中最重要的一類。與紅細胞血型相比,人們對白細胞抗原的了解較晚,人體第一個白細胞抗原Mac是1958年法國科學家J.多塞發(fā)現的。HLA是人體白細胞抗原的英文縮寫,已發(fā)現HLA抗原有144種以上,這些抗原分為A、B、C、D、DR、DQ和DP7個系列,而且HLA在其他細胞表面上也存在。 HLA抗原是一種糖蛋白(含糖為9%),其分子結構與免疫球蛋白極相似(圖3)。HLA分子由4條肽鏈組成(含2條輕鏈和2條重鏈),重鏈上連接2條糖鏈。HLA分子部分鑲嵌在細胞膜的雙脂層中,其插入膜的部分相當于免疫球蛋白IgG的Fc區(qū)段,輕鏈為β-微球蛋白。由于分子結構上的相似,故HLA與有保衛(wèi)功能的免疫防御系統(tǒng)密切相關。 此外,HLA和紅細胞血型一樣都受遺傳規(guī)律的控制。決定HLA型的基因在第6對染色體上。每個人分別可從父母獲得一套染色體,所以一個人可以同時查出A、B、C、D和DR5個系列中的5~10種白細胞型,因此表現出來的各種白細胞型有上億種之多。在無血緣關系的人間找出HLA相同的兩個是很困難的。但同胞兄弟姊妹之間總是有1/4機會HLA完全相同或完全不同。因此法醫(yī)鑒定親緣關系時,HLA測定是最有力的工具。
輸血
應以輸同型血為原則,只有在沒有同型血且十分緊急的情況中,才能輸入異型血。在這種情況下,O型血可以少量(不大于200ml)輸給各類血型,AB型血的病人也可以接受少于200ml的任何血型的血液。 6月14日“世界獻血者日”
編輯本段血液循環(huán)
心臟節(jié)律性的搏動推動血液在心血管系統(tǒng)中按一定方向循環(huán)往復地流動。血液循環(huán)是英國哈維根據大量的實驗、觀察和邏輯推理于1628年提出的科學概念。然而限于當時的條件,他并不完全了解血液是如何由動脈流向靜脈的。1661年意大利馬爾庇基在顯微鏡下發(fā)現了動、靜脈之間的毛細血管,從而完全證明了哈維的正確推斷。動物在進化過程中,血液循環(huán)的形式是多樣的。循環(huán)系統(tǒng)的組成有開放式和封閉式;循環(huán)的途徑有單循環(huán)和雙循環(huán)。人類血液循環(huán)是封閉式的,由體循環(huán)和肺循環(huán)兩條途徑構成的雙循環(huán)。血液由左心室射出經主動脈及其各級分支流到全身的毛細血管,在此與組織液進行物質交換,供給組織細胞氧和營養(yǎng)物質,運走二氧化碳和代謝產物,動脈血變?yōu)殪o脈血;再經各級靜脈匯合成上、下腔靜脈流回右心房,這一循環(huán)為體循環(huán)。血液由右心室射出經肺動脈流到肺毛細血管,在此與肺泡氣進行氣體交換,吸收氧并排出二氧化碳,靜脈血變?yōu)閯用}血;然后經肺靜脈流回左心房,這一循環(huán)為肺循環(huán)。
編輯本段血液的功能
血液在人體生命活動中主要具有四方面的功能。
①運輸
運輸是血液的基本功能,自肺吸入的氧氣以及由消化道吸收的營養(yǎng)物質,都依靠血液運輸才能到達全身各組織。同時組織代謝產生的二氧化碳與其他廢物也賴血液運輸到肺、腎等處排泄,從而保證身體正常代謝的進行。血液的運輸功能主要是靠紅細胞來完成的。貧血時,紅細胞的數量減少或質量下降,從而不同程度地影響了血液這一運輸功能,出現一系列的病理變化。
②參與體液調節(jié)
激素分泌直接進入血液,依靠血液輸送到達相應的靶器官,使其發(fā)揮一定的生理作用。可見,血液是體液性調節(jié)的聯系媒介。此外,如酶、維生素等物質也是依靠血液傳遞才能發(fā)揮對代謝的調節(jié)作用的。
③保持內環(huán)境穩(wěn)態(tài)
由于血液不斷循環(huán)及其與各部分體液之間廣泛溝通,故對體內水和電解質的平衡、酸堿度平衡以及體溫的恒定等都起決定性的作用。
④防御功能
機體具有防御或消除傷害性刺激的能力,涉及多方面,血液體現其中免疫和止血等功能。例如,血液中的白細胞能吞噬并分解外來的微生物和體內衰老、死亡的組織細胞,有的則為免疫細胞,血漿中的抗體如抗毒素、溶菌素等均能防御或消滅入侵機體的細菌和毒素。上述防御功能也即指血液的免疫防御功能,主要靠白細胞實現。此外,血液凝固對血管損傷起防御作用。
⑤調節(jié)體溫
血液也是一種膠體,在做實驗時不慎被劃傷流血,可以使用氯化鐵緊急止血.原理:血液是一種膠體,膠體中加入了電解質使血液介穩(wěn)性被破壞,可以使膠體發(fā)生聚沉.而血液中氫氧根含量很少所以不會大量形成氫氧化鐵. 哺乳類的血液 兩管以EDTA抗凝血處理后的血液,左管是紅血球沉降在底部后的血;右管是新取出的血。 以人為例,成人大約有5升血液。以體積計,血細胞約占血液的45%。 每升血液有: 5 × 1012個紅血球(約占血液體積的45%):在哺乳類,成熟的紅血球沒有細胞核及細胞器。它們含有血紅素以輸送氧氣。在紅血球上的糖蛋白決定了血型是哪一類。紅血球在血中所占比例稱為紅細胞壓積。人體所有紅血球的表面積總和大約是人體外皮膚面積的2000倍。[1] 9 × 109個白血球(約占血液體積的1.0%):它們是免疫系統(tǒng)的一部份,負責破壞及移除年老或異常的細胞及細胞殘骸,及攻擊病原體及外來物體。 3 × 1011個血小板(約占血液體積少于1%):它們負責凝血,把纖維蛋白原變成纖維蛋白。纖維蛋白結成網狀聚集紅血球形成血栓,血栓阻止更多血液流失,并幫助阻止細菌進入體內。
編輯本段生理學
制造及降解
血細胞在骨髓產生,過程稱為“血細胞生成”。蛋白質構成部份,包括凝血因子,主要由肝臟產生,而激素由內分泌腺產生,至于水狀成份則由丘腦下部調節(jié)腎臟去維持,腸道也有份間接參與。 血細胞在脾臟及肝枯否細胞降解,肝也有移除一些蛋白質、脂肪及氨基酸。腎臟把身體的廢物帶進尿液。正常的紅血球在血漿中約有120天壽命。
輸送氧氣
一個在正常氣壓環(huán)境中呼吸的健康人類,他的動脈血液中的氧約有98.5%與血紅素產生化學結合,只有1.5%是溶于其它血液成份中。血紅素也是哺乳類及許多其它物種的主要氧輸送者。 除了肺動脈、臍動脈及兩者的對應靜脈外,帶氧血液從心臟經過動脈、小動脈及毛細血管到達身體各處,然后脫氧血液經小靜脈及靜脈流回心臟。 在正常情形下,人在休息時,離開肺部的血液中的血紅素約有98—99%被氧飽和。一個健康成人在休息時,回到肺部的“脫氧”血液仍然約有75%氧飽和。持續(xù)運動增加氧的消耗,減少靜脈血液的氧飽和,在一個受過訓練的運動員身上可降至少于15%,即使呼吸率及血流增加,動脈血液的氧飽和在這些情形下可降至95%或更低。對于一個正在休息(例如在手術期間被麻醉)的人來說,這樣低的靜脈氧飽和被視為危險Template:Todo:此段文字容易引起誤解,請繼續(xù)修繕。 由于母體供應胎盤的血液的氧分壓只有成人肺部的20%,胎兒制造了一種具有更強氧親和力的血紅素(血紅素F),確保可以從血液中盡可能地取得足夠的氧。 除了氧外,一些物質也可與血紅素結合,有時候可以造成身體的永久性損害。一氧化碳是其中之一,它與血紅素結合成不可還原的碳氧血紅素,從而降低血液的載氧量,嚴重時可引致身體缺氧,造成器官的永久性損害甚至死亡。
昆蟲
昆蟲的血(更恰當的稱呼是血淋巴)不參與氧的輸送。昆蟲身上的氣孔容許空氣中的氧直接擴散到身體組織。
病癥
傷口流血 血管閉塞,可引致局部缺血,令組織壞死。 血友病 白血病 貧血 地中海貧血 紅細胞增多癥 正鐵血紅蛋白血癥 經血液傳播的傳染病 敗血癥
本文地址:http://www.mcys1996.com/jiankang/293832.html.
聲明: 我們致力于保護作者版權,注重分享,被刊用文章因無法核實真實出處,未能及時與作者取得聯系,或有版權異議的,請聯系管理員,我們會立即處理,本站部分文字與圖片資源來自于網絡,轉載是出于傳遞更多信息之目的,若有來源標注錯誤或侵犯了您的合法權益,請立即通知我們(管理員郵箱:douchuanxin@foxmail.com),情況屬實,我們會第一時間予以刪除,并同時向您表示歉意,謝謝!